Sodium-dependent net urea transport in rat initial inner medullary collecting ducts.
نویسندگان
چکیده
We reported that feeding rats 8% protein for 3 wk induces net urea transport and morphologic changes in initial inner medullary collecting ducts (IMCDs) which are not present in rats fed 18% protein. In this study, we measured net urea transport in microperfused initial IMCDs from rats fed 8% protein for > or = 3 wk and tested the effect of inhibiting Na+/K(+)-ATPase activity and found that adding 1 mM ouabain to the bath reversibly inhibited net urea transport from 14 +/- 3 to 6 +/- 2 pmol/mm per min (P < 0.01), and that replacing potassium (with sodium) in the bath reversibly inhibited net urea transport from 18 +/- 3 to 5 +/- 0 pmol/mm per min (P < 0.01). Replacing perfusate sodium with N-methyl-D-glucamine reversibly inhibited net urea transport from 12 +/- 2 to 0 +/- 1 pmol/mm per min (P < 0.01), whereas replacing bath sodium had no significant effect on net urea transport. Adding 10 nM vasopressin to the bath exerted no significant effect on net urea transport. Finally, we measured Na+/K(+)-ATPase activity in initial and terminal IMCDs from rats fed 18% or 8% protein and found no significant difference in either subsegment. Thus, net urea transport in initial IMCDs from rats fed 8% protein for > or = 3 wk requires sodium in the lumen, is reduced by inhibiting Na+/K(+)-ATPase, and is unchanged by vasopressin or phloretin. These results suggest that net urea transport may occur via a novel, secondary active, sodium-urea cotransporter.
منابع مشابه
Active sodium-urea counter-transport is inducible in the basolateral membrane of rat renal initial inner medullary collecting ducts.
Rat inner medullary collecting ducts (IMCD3s) possess a luminal Na+-dependent, active urea secretory transport process, which is upregulated by water diuresis. In this study of perfused IMCDs microdissected from base (IMCD1), middle (IMCD2), or tip (IMCD3) of the inner medulla, we tested whether furosemide diuresis alters active urea transport. Rats received furosemide (10 mg/d s.c. for 3-4 d) ...
متن کاملAn independent effect of osmolality on urea transport in rat terminal inner medullary collecting ducts.
We have shown that urea transport across the terminal inner medullary collecting duct (terminal IMCD) is mediated by a vasopressin-stimulated, facilitated diffusion process exhibiting properties consistent with a transporter. To investigate whether hypertonic NaCl, as exists in vivo in the inner medulla, affects urea permeability, we studied isolated perfused rat terminal IMCD segments. Perfusa...
متن کاملOsmolar regulation of endothelin-1 production by rat inner medullary collecting duct.
Recent evidence has implicated endothelin-1 (ET-1) as an autocrine inhibitor of inner medullary collecting duct (IMCD) sodium and water transport. The regulators of IMCD ET-1 production are, however, largely unknown. Because of the unique hypertonic environment of the IMCD, the effect of varying extracellular tonicity on IMCD ET-1 production was evaluated. Increasing media osmolality from 300 t...
متن کاملElectrolyte and fluid secretion by cultured human inner medullary collecting duct cells.
Inner medullary collecting ducts (IMCD) are the final nephron segments through which urine flows. To investigate epithelial ion transport in human IMCD, we established primary cell cultures from initial (hIMCD(i)) and terminal (hIMCD(t)) inner medullary regions of human kidneys. AVP, PGE(2), and forskolin increased cAMP in both hIMCD(i) and hIMCD(t) cells. The effects of AVP and PGE2 were great...
متن کاملA mathematical model of the inner medullary collecting duct of the rat: pathways for Na and K transport.
A mathematical model of the inner medullary collecting duct (IMCD) of the rat has been developed representing Na+, K+, Cl-,[Formula: see text] CO2, H2CO3, phosphate, ammonia, and urea. Novel model features include: finite rates of hydration of CO2, a kinetic representation of the H-K-ATPase within the luminal cell membrane, cellular osmolytes that are regulated in defense of cell volume, and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 94 4 شماره
صفحات -
تاریخ انتشار 1994